шестерня

Измерительная система бв4180 для контроля валов в процессе сопряженного шлифования

Дата публикации: 05.10.2010
Метки: контакт, рычаг, система, стрела, схема, шестерня

Измерительная система предназначена для управления автоматическим циклом шлифования гладкого вала, пригоняемого с требуемым зазором (натягом) к сопрягаемому с ним окончательно обработанному отверстию втулки. Измерительная система применяется в том случае, когда допуск сопряжения не может быть выдержан без применения селективной сборки, а также в условиях мелкосерийного производства  парных деталей с жесткими допусками на зазор или натяг.

Предусмотрено 23 варианта исполнений измерительной системы.

В комплект измерительной системы входит отсчетно-командное устройство, настольная индуктивная скоба с подводящим устройством и измерительное устройство для отверстий.

Рабочий цикл измерительной системы, оснащенной настольной скобой с механизмом арретирования и подводящим устройством ручного действия, осуществляется следующим образом.

В начальной фазе цикла шлифовальная бабка и настольная скоба находятся в исходном положении. Предназначенную для сопряжения с валом втулку устанавливают на базирующие элементы измерительного устройства для отверстий. Поворотом рукоятки кулачки механизма арретирования разъединяют с упорами.

Каретки, подвешенные на плоскопараллельных пружинах, под действием пружин растяжения получают поступательные перемещения. Благодаря этому измерительные наконечники соприкоснутся с контролируемой деталью. Взаимное положение кареток, определяемое размером отверстия, контролируется индуктивным преобразователем. Перемещения на шток преобразователя передаются микрометрическим винтом. Выходной сигнал А преобразователя, пропорциональный диаметру контролируемого отверстия, поступает в отсчетно-командное устройство.

После установки в центрах станка заготовки сопрягаемого вала осуществляется ускоренный подвод шлифовальной бабки. В режиме чернового шлифования без участия измерительной системы с заготовки снимается черновая часть припуска. Затем скоба, прикрепленная к штоку подводящего устройства, перемещается к шлифуемой заготовке с помощью двухплечевого рычага. Рабочее перемещение сообщается роликом, взаимодействующим с рессорой. Стабильная фиксация скобы в контролирующем положении обеспечивается при установке сферического упора на грани базирующей призмы, прикрепленной к корпусу подводящего устройства. Силовой контакт с призмой обеспечивается за счет деформации рессоры.

Подводящее устройство оснащено механизмом арретирования измерительных наконечников. В исходном положении скобы и в процессе ее движения к контролируемой детали арретирующий рычаг взаимодействует с выступом кулачка, посаженного совместно с рычагом на ось, и сообщает поступательное движение плунжеру. Плунжер своим конусом с помощью роликов размыкает измерительные каретки, подвешенные к корпусу скобы на плоскопараллельных пружинах.

В конце рабочего хода скобы горизонтальное плечо третирующего рычага западает во впадину рабочего профиля кулачка. Благодаря этому упор рычага разобщается с плунжером. Под действием возвратной пружины плунжер устремляется вправо, и освобожденные измерительные наконечники соприкоснутся с контролируемой деталью. Измерительное усилие обеспечивается пружинами растяжения.

Спустя 1,5—2с с момента установки измерительных наконечников на заготовку включаются цепи выдачи команд в схему управления станка.

Взаимные перемещения измерительных наконечников передаются микрометрическим винтом на шток индуктивного преобразователя. Выходной сигнал В преобразователя, пропорциональный текущему размеру вала, поступает в отсчетно-командное устройство, где вычитается из сигнала, пропорционального размеру отверстия во втулке.

Отсчет величины производится по шкале, проградуированной в мкм. Автоматическое управление рабочим циклом станка осуществляется командами прибора, поступающими во внешние электрические цепи при достижении заранее установленной величины.

Предварительные команды, воздействуя на исполнительные органы, станка изменяют скорость подач шлифовальной бабки. Конечная команда прекращает цикл обработки в момент получения заданной величины зазора (натяга) в сопрягаемой паре.

Поступательное перемещение для возврата скобы на исходную позицию обеспечивается роликом, взаимодействующим с поводком при повороте рычага по часовой стрелке.

При подготовке измерительной системы к работе осуществляют следующие наладочные операции.

Подводящее устройство крепят к столу шлифовального станка так, чтобы измерительные наконечники скобы разместились против контролируемого сечения детали. Для ориентации измерительных наконечников в диаметральной плоскости детали скобу поворачивают вокруг оси державки, установленной в клеммном зажиме колодки, до тех пор, пока оба наконечника не будут оставлять на поверхности детали общий «оптический след». По окончании ориентации державку фиксируют крепежными болтами. Величину арретирования измерительных наконечников регулируют с помощью болта.

Для настройки измерительной системы отбирают из готовых деталей или специально изготавливают подогнанные с заданным зазором и аттестованные вал и втулку. Желательно, чтобы исполнительный размер отверстия соответствовал середине поля допуска на его изготовление, а разность размеров отверстий и вала была равна средней величине заданного зазора сопрягаемой пары.

Перед настройкой следует установить потенциометр корректировки нуля в среднюю часть зоны регулирования, тумблером обеспечить отсчет по грубой шкале с ценой деления 5 мкм, тумблер переключить в положение «наладка».

Настройка измерительного устройства для отверстий осуществляется следующим образом.

Рукоятку перевести в положение «Арретирование». Установить на центрирующую пробку образцовую втулку. Рукоятку перевести в положение «Измерение». Вращением микрометрического винта, взаимодействующего с индуктивным преобразователем, обеспечить совмещение стрелочного указателя с нулевой отметкой шкалы прибора.

Вращая с помощью торцового ключа шестерню, сообщить перемещение каретке измерительного наконечника влево до тех пор, пока стрелка прибора не установится против отметки «+ 100 мкм»: В таком положении зафиксировать каретку болтом. Аналогично, вращая ключом шестерню, переместить вправо вторую каретку с наконечником до момента совмещения стрелки с отметкой «+200 мкм». Каретку зафиксировать болтом. Вращением микрометрического винта совместить стрелку прибора с нулевой отметкой шкалы.

Установкой тумблера в положение «2» подключить к отсчетно- командному устройству оба индуктивных преобразователя, работающих по схеме вычитания выходных сигналов А—В. Установить в центрах станка образцовый вал. С помощью шестерен развести измерительные наконечники на размер, превышающий диаметр контролируемого вала. Движением рукоятки установить скобу в позицию измерения. Вращением микрометрического винта совместить стрелку показывающего прибора с нулевой отметкой шкалы. При помощи шестерни нижнюю ножку переместить вверх до соприкосновения измерительного наконечника с валом. Закрепить наконечник болтом, когда стрелка показывающего прибора установится против отметки «+100 мкм». С помощью шестерни верхний измерительный наконечник переместить вниз до касания с валом. Перемещение прекратить и закрепить наконечник болтом, когда стрелка показывающего прибора установится против отметки «200 мкм». Вращением микрометрического винта установить стрелку показывающего прибора на нуль.

В результате выполненных настроечных операций измерительные каретки настольной скобы и измерительного устройства для отверстий отрываются от упоров, служащих ограничителями рабочего хода. При этом обеспечиваются условия правильной работы плоскопараллельных пружин подвески измерительных кареток.

Тумблером переключить показывающий прибор для отсчета по точной шкале. С помощью потенциометров произвести настройку предварительных команд. Уровень срабатывания окончательной команды совместить с нулевой отметкой шкалы потенциометром.

Сообщая плавные перемещения измерительным наконечникам скобы, проверить правильность настройки команд по шкале показывающего прибора и по включению сигнальных ламп.

При помощи потенциометра сместить настройку по шкале показывающего прибора вправо от нулевой отметки шкалы, если необходимо выполнить сопряжение с зазором, влево от нуля — для получения натяга в сопрягаемой паре.

Отвести скобу в исходное положение. Тумблером включить режим «Работа». Установить на измерительное устройство для отверстий предназначенную для сопряжения готовую втулку. В центрах станка установить заготовку вала. Произвести в полуавтоматическом режиме шлифование пробной партии валов. Проконтролировать полученные размеры с помощью универсальных измерительных средств. С учетом полученных результатов откорректировать первоначальиую настройку потенциометром.

В процессе наладки и эксплуатации измерительной системы необходимо согласовать масштабы выходных сигналов индуктивных преобразователей и определять погрешность их суммирования. Методика поверки заключается в следующем.

Настольную скобу крепят на измерительное устройство для отверстий так, чтобы измерительные наконечники соприкасались с наконечниками для контроля отверстий. Наконечники  вводят в контакт с двумя прикрепленными к корпусу рычагами, которые могут разжиматься сферой  микрометрического винта. Вращая винт, сообщают равные по величине и противоположные по направлению перемещения индуктивным преобразователям, включенным в режим суммирования. Результирующий выходной сигнал преобразователей может изменять свое значение лишь в пределах допустимой погрешности суммирования (0,5 мкм на участке суммирования ±120 мкм и 1 мкм на участке ±200 мкм).

Если погрешность, определяемая по отклонению стрелки показывающего прибора, превышает допустимое значение, следует согласовать масштабы индуктивных преобразователей посредством потенциометров, размещенных на задней панели отсчетно-командного устройства.

Погрешность суммирования в процессе эксплуатации можно также определять с помощью образцовых деталей. Однако такой способ поверки уступает по точности описанному выше, так как не исключает погрешности аттестации образцовых деталей.

Методы устранения неисправностей, возникающих при работе измерительной системы БВ-4180, аналогичны методам, приведенным в соответствующем разделе описания измерительной системы БВ-4100.

Универсальная измерительная система бв4100

Дата публикации: 02.10.2010
Метки: жидкость, корпус, система, стрела, схема, шестерня

Измерительная система, основанная на электронном принципе действия, предназначена для управления автоматическим циклом обработки деталей на центровых круглошлифовальных станках. Параметры и характеристики измерительной системы соответствуют ГОСТ 8517—70 и ГОСТ 18272—72.

Для удовлетворения широкого круга требований, предъявляемых к современным средствам активного контроля при круглом шлифовании, измерительная система комплектуется в различном сочетании рядом типовых функциональных узлов. Предусмотрено 30 вариантов исполнения измерительной системы. Каждое исполнение комплектуют электронным отсчетно-командным устройством типа БВ-6119-01 или БВ-6119-02, выдающим во внешние цепи соответственно четыре или две управляющие команды. Эти устройства применяют в качестве основных моделей для решения многих задач активного контроля, в том числе контроля деталей с прерывистой поверхностью.

Контроль гладких валов и валов со шпоночными пазами в процессе обработки методами врезания или продольной подачи на круглошлифовальных автоматах и полуавтоматах обеспечивается рядом настольных индуктивных скоб типа БВ-3152-40, БВ-3152-80, БВ-3152-125 и БВ-3152-200. Скобы оснащают индуктивным преобразователем типа БВ-6067.

Автоматизация перемещения измерительной скобы и ее ориентация по отношению к шлифуемой заготовке обеспечивается гидравлическим подводящим устройством типа БВ-3102Т. Наряду с поставкой полного комплекта подводящего устройства предусмотрены варианты поставки только гидроцилиндров без деталей привязки к конкретной модели станка.

Рабочий цикл шлифования методом врезания с применением настольной скобы БВ-3152 осуществляется следующим образом. В начальной фазе цикла настольная скоба шлифовальная бабка занимают исходное положение. Для исключения выдачи ложных команд в нерабочем положении скобы из схемы стайка в измерительную систему поступает сигнал, обеспечивающий блокировку цепей выдачи команд управления. После закрепления заготовки на позиции обработки без участия измерительной системы осуществляется ускоренный подвод шлифовальной бабки и переход на форсированную или черновую подачу. Благодаря этому измерительная скоба приобретает плавное движение в сторону заготовки. Одновременно для подготовки разблокирования командных цепей управления схема станка формирует сигнал, производящий запуск электронного реле времени  измерительной системы. Реле времени обеспечивает включение командных цепей с задержкой, превышающей на 1,5—2 с промежуток времени, необходимый для совершения рабочего хода и установки измерительной скобы в контролирующее положение.

В процессе обработки шток индуктивного преобразователя 2 воспринимает перемещение измерительных кареток скобы. Выходной сигнал преобразователя, пропорциональный изменению размера шлифуемого вала, после усиления электронной схемой преобразуется в аналоговый сигнал для показывающего прибора 6 ив дискретные команды для исполнительных органов станка.

Предварительные команды обеспечивают переход от форсированной к черновой и чистовой подачам абразивного круга. На завершающей фазе цикла в режиме чистового или доводочного шлифования с заготовки снимается оставшаяся часть припуска. В момент достижения заданного размера формируется окончательная команда для ускоренного отвода шлифовальной бабки и измерительной скобы на исходную позицию.

Для контроля деталей с прерывистой поверхностью электрическая схема устройства снабжена пиковым детектором, который в сочетании с элементами электронной памяти пропускает в отсчетно-командную часть устройства сигналы, соответствующие размеру выступов шлифуемой поверхности, и исключает прохождение ложной информации, когда измерительные наконечники попадают в разрывы этой поверхности.

В случае обработки валов методом продольной подачи команды управления, поступающие от измерительной системы, воспринимаются схемой электроавтоматики станка в конце продольного хода стола.

Все элементы электронной схемы отсчетно-командного устройства, размещены в пылезащищенном корпусе. Назначение органов управления, сигнализации и регулировки, установленных на передней и задней панелях устройства.

Контроль гладких валов в процессе обработки методом врезания на круглошлифовальных полуавтоматах или на универсальных станках обеспечивается измерительной системой БВ-4100, оснащаемой рядом навесных трехконтактиых индуктивных скоб типа БВ-3154-40.

При обработке методом врезания скобу устанавливают на станке с помощью унифицированного кронштейна БВ-3221, закрепляемого обычно на кожухе шлифовального круга. При обработке с продольной подачей практикуется установка кронштейна со скобой на одной из бабок или на столе шлифовального стайка. Оба способа крепления навесной скобы обеспечивают измерение диаметра шлифуемой детали в одном сечении.

Рабочий цикл круглошлифовального полуавтомата при использовании измерительной системы с навесной скобой БВ-3154 аналогичен описанному выше циклу шлифования с настольной скобой. Отличие заключается в том, что запуск реле времени РВ осуществляется не внешними цепями, а элементами собственной электросхемы по сигналу индуктивного преобразователя, возникающему в момент установки измерительных наконечников на заготовку, имеющую припуск. Уровень срабатывания этого сигнала в отсчетно-комаидном устройстве БВ-6119 соответствует точке —15 мкм. Установку навесной скобы в контролирующее положение и возврат на исходную позицию производят вручную.

При подготовке измерительной системы к работе осуществляют следующие операции. Отсчетно-командное устройство закрепляют на установочной площадке, размещенной в зоне, удобной для обслуживания и наблюдений, исключающей попадание влаги от системы СОЖ станка. Шину заземления присоединяют к соответствующей клемме на корпусе отсчетно-командного устройства. Держатель предохранителя устанавливают в положение, соответствующее напряжению питания, поступающего из схемы станка. Электрические и гидравлические соединения осуществляют с учетом требований документации на конкретную модель станка.

После включения электрического питания проверяют правильность взаимодействия измерительной оснастки с отсчетно-командным устройством. При плавном воздействии на измерительные наконечники скобы стрелка показывающего прибора должна отклониться в правую область шкалы, а в свободном состоянии наконечников — в левую. В случае, если направления перемещений стрелки не совпадают с указанными, следует переключить тумблер полярности выходного сигнала индуктивного преобразователя.

При закреплении основания гидроцилиндра на столе станка измерительные наконечники скобы размещают против контролируемого сечения детали. Для ориентации скобы передвигают кронштейн на колонке так, чтобы точки соприкосновения измерительных наконечников с деталью находилась в середине этих наконечников и размещались в диаметральной плоскости контролируемой детали.

Перед настройкой измерительной системы потенциометр электрической корректировки нуля устанавливают в среднюю часть зоны регулирования, переключают устройство в режим «Наладка» и устанавливают переключатель преобразователей в режим «2».

Индуктивный преобразователь крепят в отведенной на исходную позицию скобе так, чтобы стрелка показывающего прибора установилась в зоне шкалы от —50 до —75 мкм. В центры станка устанавливают образцовую деталь (аттестованную с требуемой точностью меру), исполнительный размер которой соответствует середине операционного поля допуска. Ослабив затяжку крепежных болтов с помощью шестерен, разводят ножки с измерительными наконечниками так, чтобы они не соприкасались с образцовой деталью в рабочем положении скобы.

После установки скобы в позицию измерения вращением микрометрического винта достигают нулевого показания прибора. При помощи шестерни вводят в соприкосновение с образцовой деталью нижний измерительный наконечник. Перемещение ножки прекращают, когда на приборе будет достигнуто показание +100 мкм. В таком положении ножку крепят зажимным болтом. Далее при помощи шестерни верхнюю ножку перемещают до соприкосновения измерительного наконечника с поверхностью образцовой детали. Закрепляют ножку болтом, когда стрелка показывающего прибора установится против отметки шкалы «+ 2С0 мкм». В результате выполненных настроечных операций обе измерительные каретки отрываются от упоров, служащих ограничителями рабочего хода. При этом обеспечиваются условия правильной работы плоскопараллельных пружин подвески этих кареток.

С помощью микрометрического винта производят предварительную установку нуля. Затем, включив вращение образцовой детали и обеспечив подачу охлаждающей жидкости от системы СОЖ станка, совмещают стрелку с нулевой отметкой шкалы посредством потенциометра. С нулевой отметкой шкалы при помощи потенциометра совмещают уровень срабатывания окончательной команды. Для ориентировочного отсчета при настройке уровней срабатывания предварительных команд служат шкалы, нанесенные возле рукояток потенциометров. Окончательно правильность настройки команд проверяют по шкале показывающего прибора в момент включения соответствующей лампы визуальной индикации. При этом проверку перемещения стрелочного указателя вдоль шкалы прибора производят с помощью потенциометра корректировки нуля.

По окончании настройки стрелочный указатель совмещают с нулевой отметкой шкалы. Скобу возвращают на исходную позицию.

Наладку измерительной системы, оснащенной навесной скобой, осуществляют следующим образом. Сначала корпус скобы подвешивают к кронштейну, закрепленному на кожухе абразивного круга. С учетом номинального размера контролируемого вала производят установку необходимого типоразмера сменной штанги. Передвигая штангу вдоль направляющих, совмещают соответствующую отметку шкалы со штриховым индексом, нанесенным на корпус. Крепление штанги осуществляют винтами. Движок с боковым наконечником прижимают к торцу упора и фиксируют стопорным болтом. В центры станка устанавливают образцовую деталь. Шлифовальную бабку подводят в рабочее положение. Измерительные наконечники скобы вводят в соприкосновение с образцовой деталью. С помощью болтов добиваются установки измерительных наконечников в одну плоскость, перпендикулярную к оси детали. Правильно ориентированные наконечники должны оставлять на поверхности вращающейся детали общий след.

Регулировку измерительного усилия на нижнем измерительном наконечнике обеспечивают изменением крутящего момента пружины за счет поворота стакана.

По окончании наладочных операций включают вращение образцовой детали, затем с помощью микровинта совмещают стрелку показывающего прибора с нулевой отметкой шкалы.

Настройку команд осуществляют методами, изложенными выше при описании наладки настольной скобы. Перед началом цикла измерения скобу отводят в исходное положение и переключают электросхему в режим «Работа».

После шлифования в полуавтоматическом режиме первых деталей и оценки их размера универсальными измерительными средствами может быть внесена дополнительная корректировка настройки потенциометром смещения нуля.

В процессе эксплуатации измерительной системы возможно возникновение отдельных неполадок. Если при включении прибора в сеть не отклоняется стрелка и не загораются сигнальные лампы, следует проверить, нет ли обрыва в кабеле индуктивного преобразователя, и проконтролировать напряжение в линии питания. Кроме того, следует проверить, не перегорели ли сигнальные лампы или предохранитель, и, если необходимо, заменить их. В случае повторного выхода из строя необходимо установить причину короткого замыкания.

Правильное функционирование измерительной системы может быть нарушено вследствие проникновения влаги внутрь корпуса индуктивного преобразователя из-за механического повреждения герметизирующих уплотнений. После просушки узлов преобразователя поврежденные детали уплотнений следует заменить новыми. Увеличение погрешности измерения может появиться при ослаблении крепления деталей и узлов, входящих в измерительную цепь индуктивной скобы. На точностные показатели отрицательно влияет износ контактных поверхностей измерительных наконечников. Обновление изношенных поверхностей осуществляется путем поворота цилиндрических наконечников вокруг собственной оси. Смещение настройки в процессе работы измерительной системы, обусловленное небольшим износом измерительных поверхностей наконечников, легко компенсируется потенциометром электрической корректировки нуля в диапазоне ±60 мкм.

Устранение возникающих неисправностей и ремонт измерительной системы следует поручать квалифицированным специалистам.

Механизмы поворота

Дата публикации: 05.06.2010
Метки: двигатель, корпус, кран, механизм, трансмиссия, шестерня

В трансмиссиях механических приво­дов с реверсивно-распределительными механизмами, а также электрических и гидравлических приводов механизм по­ворота включает в себя червячный, ци­линдрический или комбинированный коническо-цилиндрический редуктор.

В трансмиссиях кранов серии МКА с механическим приводом для обеспече­ния независимого реверсирования меха­низм поворота выполняют заодно с ре­версивным механизмом.

Механизм поворота с червячным ре­дуктором установлен, например, на кра­нах типа КС-2561Д и КС-2561К. Он включает в себя предохранительную фрикционную коническую муфту и тор­моз. Вал с червячным коле­сом установлен в чугунном корпусе редуктора на подшипниках качения. На нижнем конце вала на шпонке закреплена цилиндрическая шестерня, находящаяся в постоянном зацеплении с зубчатым венцом опорно-поворотного устройства. Червячное колесо находится в постоянном зацеплении с однозаходным самотормозящимся червяком.

Движение от реверсивно-распределительного механизма крана передается червяку, а от него через червячное колесо и коническую муфту — на вал, вместе с которым начинает вращаться шестерня. Шестерня, обегая зубчатый венец опорно-поворотного устройства, вращает пово­ротную часть крана. Зацепление червяка с зубьями червячного колеса регулируют шайбами. Подшипники механизма поворота смазывают через пресс-масленки. Пружины затянуты так, что­бы предохранительная муфта передавала нормальный крутящий момент.

На конце червячного вала установлен ленточный постоянно замкнутый тор­моз. Ленту тормоза регулируют так, чтобы при подъеме максимального груза, когда кран стоит на площадке с уклоном до 3°, п9воротная рама не поворачивалась самопроизвольно.

Механизм поворота с коническо-цилиндрическим трехступенчатым редукто­ром на кране КС-4561А включает в себя электродвигатель, соединенный с редуктором зубчатой муфтой, и коло­дочный нормально закрытый тормоз. Первая ступень редуктора — коническая пара, две другие — цилиндрические. Цилидрическая шестерня, размещенная на валу, находится в зацеплении с зуб­чатым венцом опорно-поворотного устройства. Шестерни и подшипники смазываются плунжерным масляным на­сосом, который приводится в действие от эксцентрика, установленного на про­межуточном валу редуктора. Плунжер за­сасывает масло через фильтр и всасываю­щий клапан и подает его через нагнета­тельный клапан по трубам к верхним подшипникам и шестерням редуктора.

Тормоз, расположенный на входном валу редуктора, размыкается электромаг­нитом, включенным в цепь параллельно с электродвигателем: при включении электродвигателя электромагнит также включается и растормаживает механизм поворота.

Аналогичная конструкция механизма поворота и у ряда кранов с гидравлическим и механическим приводом. У кра­нов с гидроприводом и электроприводом механизм поворота приводится от гидро­двигателя, соединенного с входным ва­лом механизма зубчатой муфтой. Тормо­жение механизма осуществляется коло­дочным нормально замкнутым тормо­зом, аналогичным по конструкции тормо­зу (тормоз раз­мыкается не пневмокамерной муфтой, а гидроразмыкателем).

Механизм поворота с двухступен­чатыми цилиндрическими редукторами, применяемый, например, на кранах КС-2571А, КС-3571А, КС-3562Б, включает в себя двигатель (электрический или гидравлический) и колодочный тор­моз.

Двигатель крепится к верхнему торцу корпуса редуктора четырьмя болтами с пружинными шайбами. На выходном валу двигателя установлен на шпонке тормозной шкив с зубчатой полумуф­той, являющейся частью зубчатой муф­ты, которая соединяет вал двигателя с входным валом-шестерней редуктора. Вал-шестерня опирается на сферические подшипники, один из которых установ­лен в корпусе редуктора, а второй вмон­тирован в шестерню.

Выходной вал получает вращение через вал-шестерню, шестерню, вал- шестерню и шестерню. На нем установлена на шлицах шестерня, находя­щаяся в зацеплении с зубчатым венцом и удерживаемая от осевого перемещения торцовой шайбой, привернутой к валу 3 болтами.

Механизм поворота устанавливают на опорное кольцо поворотной платформы и центрируют по втулке, вваренной в по­воротную платформу. Крепят редуктор болтами с пружинными шайбами. Масло в корпус механизма заливают че­рез пробку, а сливают через пробку. Уровень масла проверяют по маслоуказателю (щупу). Для предотвращения течи масла в крышках редуктора вмонтированы два сальника.

Тормоз механизма поворота на кране КС-4561А с электрогидравлическим тол­кателем, а на остальных кранах с гидро­размыкателем. Шток гидроразмы­кателя шарнирно соединен с одним кон­цом углового рычага, ось которого установлена на кронштейне, другой конец шарнирно соединен через вилку со штоком. С помощью шарниров шток связан с тягами, а они, в свою очередь, — с рычагами, расположенны­ми на осях. На рычагах устано­влены колодки, охватывающие шкив.

Торможение механизма поворота осу­ществляется пружиной, которая через тягу и рычаги прижимает колод­ки к шкиву. При включении гидро­размыкателя (или электрогидротолкателя) шток отводит вправо верхний конец рычага, рычаг поворачивается вокруг оси и своим нижним концом нажимает на шток, который через тяги воздействует на рычаги, раздвигая их. Колодки от­ходят от шкива, и механизм расторма­живается. Регулируют натяжение пру­жины гайкой.

Сцепные муфты включения

Дата публикации: 05.06.2010
Метки: механизм, нагрузка, передача, трансмиссия, шасси, шестерня

Сцепные муфты включения приме­няют для управления потоком энергии в трансмиссиях приводов и передачах си­ловых установок: для включения и от­ключения механизмов или участков трансмиссии. Они позволяют разъеди­нять или соединять неподвижный участок трансмиссии с вращающимся без оста­новки последнего. Сцепные муфты под­разделяют на кулачковые и фрикционные.

Кулачковые муфты бывают собствен­но кулачковые и зубчатые.

Собственно кулачковая муфта состоит из подвижной полу­муфты, которая может перемещаться вдоль вала вправо или влево по шли­цам или шпонке, и двух неподвижных. Неподвижные полумуфты жест­ко соединены или составляют одно целое с элементами трансмиссии, которым надо передать движение. На торцах, снаружи или внутри каждой полумуфты, имеются кулачки, с помощью которых подвиж­ная и неподвижные полумуфты сцеп­ляются друг с другом.

Когда полумуфта перемещается в крайнее левое положение, ее кулачки входят в соответствующие впадины полу­муфты. При этом вместе с валом и по­лумуфтой будут вращаться полумуф­та и постоянно соединенный с ней элемент трансмиссии. Правую полумуфту и соединенный с ней элемент трансмис­сии включают аналогично — перемеще­нием подвижной полумуфты вправо. На рисунке полумуфта находится в ней­тральном положении, при котором она не передает движение полумуфтам. Полумуфту перемещают вдоль вала с помощью рычага управления, который фиксируют во включенном положении. При включении муфты необходимо сле­дить за тем, чтобы кулачки полумуфт полностью входили в зацепление. Если рабочие поверхности кулачков касаются друг друга не всей плоскостью, на их углах образуются скосы, что может явиться причиной самовыключения муф­ты при работе, даже когда рычаг управ­ления муфтой надежно зафиксирован. Смятые кулачки полумуфт исправляют при ремонте наплавкой металла и после­дующей обработкой.

 

Описанная кулачковая муфта двусто­роннего действия (двусторонняя муфта), так как может передавать движение в обе стороны: вправо и влево. Если нужно передать движение только в одну сторо­ну, применяют односторонние муфты с одной неподвижной полумуфтой.

У зубчатой муфты вместо ку­лачков имеются зубья. В остальном кон­струкция и принцип работы кулачковых и зубчатых муфт одинаковы.

Вместо муфт в механизмах кранов могут применять подвижные шестерни. Для включения и отключения механизма такую шестерню перемещают вдоль вала по шпонке или шлицам и вводят в зацеп­ление (выводят из зацепления) с шестер­ней, расположенной на другом валу и за­фиксированной от осевого перемещения. Подвижные шестерни могут выполняться в виде блока из двух шестерен. Тогда при перемещении блока вдоль вала одну из его шестерен выводят из зацепления, а другую вводят в зацепление с шестер­нями, расположенными на другом валу.

Несмотря на то, что муфты и по­движные шестерни позволяют включать и отключать механизмы без остановки вращающейся части трансмиссии, про­изводить эти операции при вращающихся й находящихся под нагрузкой элементах трансмиссии не рекомендуется, так как при этом кулачки (зубья) вращающейся и неподвижной полумуфт (шестерен) уда­ряются друг о друга и не полностью вхо­дят в зацепление друг с другом, в резуль­тате чего рабочие поверхности кулачков и зубьев разрушаются, а сами они могут сломаться. Кроме того, удары, сопрово­ждающие включение полумуфт (шесте­рен), отрицательно сказываются на дру­гих элементах трансмиссии.

Фрикционные муфты (название меха­низма происходит от греческого слова «фрикция», что означает трение) приме­няют для плавного включения вращаю­щихся и находящихся под нагрузкой эле­ментов трансмиссии. Действие фрик­ционных муфт основано на использова­нии трения, возникающего между поверх­ностями двух тел, перемещающихся от­носительно друг друга, когда тела прижи­маются друг к другу. Если, например, прижать движущийся диск к неподвижно­му, то на движущийся диск будет дей­ствовать сила, стремящаяся остановить его, а на неподвижный — сила, стремя­щаяся сдвинуть его в том направлении, в котором движется первый диск. Обе эти силы являются результатом трения. Они равны по значению и противопо­ложны по направлению. Сила трения за­висит от усилия, с которым движущийся и неподвижный диски прижаты друг к другу, и коэффициента трения.

Коэффициент трения, зависящий в ос­новном от качества изготовления сопри­касающихся поверхностей и физических свойств материалов, из которых сделаны диски, показывает, какую часть сила тре­ния составляет от силы, сжимающей тру­щиеся диски. Так, коэффициент трения 0,4 означает, что если движущийся и непо­движный диски прижаты друг к другу с силой 100 Н, то возникающая между ними сила трения равна 40Н. Таким образом, сила трения между двумя диска­ми будет тем больше, чем с большей си­лой они прижимаются друг к другу и чем выше коэффициент трения. Трение вызы­вает износ поверхностей, поэтому фрик­ционные муфты изготовляют из материа­лов, хорошо сопротивляющихся истира­нию.

Фрикционные муфты бывают управ­ляемые, включаемые воздействием маши­ниста на включающий механизм, и авто­матические, включающиеся без вмеша­тельства машиниста при определенных условиях, например при достижении веду­щим валом определенной частоты враще­ния.

В приводах автомобильных кранов применяют конические и дисковые фрик­ционные муфты.

Конические (конусные) муф­ты используют в качестве предохрани­тельных (например, в механизме поворо­та кранов КС-2561К и КС-2561Д). Такая муфта состоит из ведущей и ве­домой частей, каждая из которых имеет поверхность трения конической формы. Обычно ведомая часть — нажимной диск— сидит на шлицах на вертикальном ва­лу и, вращаясь вместе с ним, может свободно перемещаться вдоль него. Веду­щая часть муфты выполнена заодно с червячным колесом, свободно сидя­щем на валу. Конус диска прижимается к конусной поверхности колеса тарель­чатыми пружинами.

Под действием сжимающей силы пру­жин, направленной вдоль оси вала, на со­прикасающихся конусных поверхностях муфты возникает сила трения, увлекаю­щая во вращение ведомую часть муф­ты — нажимной диск. Пружины затянуты так, чтобы муфта передавала номи­нальный крутящий момент. При по­падании в открытую передачу «шестер­ня— венец опорно-поворотного уст­ройства» грязи или посторонних предме­тов, а также во время включения меха­низма поворота муфта пробуксовывает, предохраняя детали механизма от пере­грузки.

Ведущая и ведомые части описанной муфты имеют одну рабочую поверхность, поэтому такая муфта называется одно­сторонней одноконусной. Конусные муф­ты могут передавать вращение в любом направлении. При изменении коэффи­циента трения между фрикционными ча­стями (например, в результате попадания влаги) передаваемое муфтой окружное усилие изменяется пропорционально коэффициенту трения.

Дисковые муфты применяют в тех случаях, когда необходимо передать большое окружное усилие при сравни­тельно небольших габаритах муфт. Муф­та состоит из ведущих и ведомых дисков. Название муфты зависит от числа ве­домых дисков: при одном ведомом диске — однодисковая, при двух — двух­дисковая, более двух — многодисковая. Одно- и двухдисковые муфты применяют в трансмиссиях шасси базовых автомоби­лей (сцепление).

Однодисковая муфта со­стоит из ведущего диска, выполненного заодно с отводной втулкой, и ведомого диска, неподвижно сидящего на ведо­мом валу. Диск сидит на ведущем ва­лу на скользящей шпонке. Чтобы включить муфту, отводкой 6 перемещают диск влево до соприкосновения с ди­ском.

Для увеличения трения между диска­ми к одному из них (как правило, ведо­мому) заклепками прикрепляют накладки из фрикционных материалов. Заклепки изготовляют из мягкого металла (крас­ной меди, алюминия), что позволяет предохранить рабочую поверхность диска в том случае, если машинист своевремен­но не обнаружит предельного износа на­кладок. Головка заклепки должна быть утоплена ниже поверхности трения не менее чем на половину толщины новой накладки. При износе заклепок до голо­вок накладку заменяют, так как при тре­нии заклепок о рабочую поверхность ди­ска уменьшается передаваемое муфтой усилие (коэффициент трения заклепок о сталь или чугун значительно меньше, чем у накладок) и портится рабочая по­верхность диска.

Многодисковая муфта. Ве­дущие диски свободно перемещаются вдоль оси ведущего вала на скользящей шпонке. Ведомая часть муфты закре­плена на валу на шпонке и имеет пазы, в которых свободно перемещаются в осе­вом направлении ведомые диски. Для включения муфты отводную втулку передвигают отводкой влево, при этом ведущие диски зажимают ведомые. Сила трения, возникающая на рабочих поверхностях дисков, приводит во враще­ние ведомые диски, а они — ведомую часть муфты.

Крутящий момент, передаваемый ди­сковой муфтой, пропорционален числу рабочих поверхностей и осевому усилию, с которым ведущие диски прижаты к ве­домым. При одном и том же осевом уси­лии включения многодисковая муфта передает крутящий момент больше, чем однодисковая муфта, во столько раз, во сколько число рабочих поверхностей тре­ния многодисковой муфты больше, чем у однодисковой.

Управление исполнительными механизмами

Дата публикации: 05.06.2010
Метки: лебедка, механизм, система, стрела, шестерня

Исполнительные механизмы кранов с механическим приводом. Для их управ­ления применяют электропневмомехани­ческое (КС-2561Д и КС-2561К) и гидро­механическое (серия МКА) управление.

Комбинированное электропневмомеха­ническое управление состоит из механи­ческого управления одним или несколь­кими механизмами и электропневматиче­ского управления остальными механиз­мами.

Так, на кранах КС-2561Д и КС-2561К управление реверсивно-распределительным механизмом механичес­кое, а тормозами исполнительных меха­низмов электропневматическое.

Принципиальные схемы электропнев­матической части такого комбинирован­ного управления не отличаются от опи­санной выше. С помощью механической части системы управляют механизмами подъема и поворота. При работе рукоят­кой реверса механизма поворота вра­щаются связанный с ней вал и ва­лик вилки реверсивно-распределительного механизма. Валик вилки, поворачи­ваясь, перемещает вилку, которая и перемещает кулачковую муфту механизма реверса. Рукоятки установлены на реверсивно-распределительной коробке крана и шлицевыми валиками соединены с вил­ками, перемещающими соответственно шестерни. При переме­щении шестерни вправо включается грузовая лебедка, при перемещении ше­стерни влево — стреловая лебедка, а при ее перемещении вправо — механизм поворота.

Комбинированное гидромеханическое управление кранов серии МКА состоит из механического управления реверсивными механизмами и тормозами лебедок и ги­дравлического управления фрикционны­ми муфтами и тормозами механизма поворота.

На ряде кранов с механическим или электрическим приводом (например, КС-2561К-1 и КС-4561А) для управления установкой крана на выносные опоры и блокировкой рессор применяют гид­равлическое управление, аналогичное по устройству.

Исполнительные механизмы кранов с электро- и гидроприводом. Для их управ­ления применяют соответственно электри­ческое и гидравлическое управление.

На кранах с гидравлическим приво­дом гидрораспределители управления ис­полнительными механизмами размеща­ются за кабиной машиниста, поэтому для управления золотниками гидрораспреде­лителя с рабочего места машиниста при­меняют механическую систему управ­ления. Система состоит из рукоя­ток управления механизмом поворота грузовой и стреловой лебедка­ми, рычагов-качалок. На кронштейне установлены два конечных выключателя, включенных в электрическую схему крана. Рукоятки воздействуют на конечные выклю­чатели упорами. Ход рукояток, необ­ходимый для включения выключателей, регулируют винтом и гайкой.

Рукоятки установлены на осях крон­штейнов свободно и через тяги и рычаги-качалки связаны со штоками золотников гидрораспределителя. Для опускания груза и стрелы или поворота вправо соответствующую рукоятку из нейтрального положения переводят вперед (от себя) в положение. Для подъ­ема груза и стрелы или поворота влево соответствующую рукоятку переводят на­зад (к себе) в положение.

Рукоятки должны удерживаться ма­шинистом в рабочем положении в тече­ние всего времени выполнения операции, иначе под действием пружин они будут возвращаться в нейтральное положение и операция прекратится.

Аналогичная система управления зо­лотниками гидрораспределителей из ка­бины машиниста применена и на гидрав­лических кранах с телескопическими стре­лами. В отличие от описанной она дополняется еще одной рукояткой для управления выдвижением секций телеско­пической стрелы.